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Abstract

The Design Optimization Toolkit (DOTk) is a stand-alone C++ software package intended
to solve complex design optimization problems. DOTk software package provides a range
of solution methods that are suited for gradient/nongradient-based optimization, large scale
constrained optimization, and topology optimization. DOTk was design to have a flexible
user interface to allow easy access to DOTk solution methods from external engineering
software packages. This inherent flexibility makes DOTk barely intrusive to other engineering
software packages. As part of this inherent flexibility, DOTk software package provides an
easy-to-use MATLAB interface that enables users to call DOTk solution methods directly
from the MATLAB command window.
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Chapter 1

Quickstart

The Design Optimization Toolkit (DOTk) is a stand-alone C++ software package in-
tended to solve complex design optimization problems. DOTk software package provides a
range of solution methods that are suited for gradient/nongradient-based optimization, large
scale constrained optimization, and topology/shape optimization. DOTk was design to have
a flexible user interface to allow easy access to DOTk solution methods from external engi-
neering software packages. This inherent flexibility makes DOTk barely intrusive to other
engineering software packages. As part of this inherent flexibility, DOTk software package
provides an easy-to-use MATLAB [7] interface that enables users to call DOTk solution
methods directly from MATLAB’s command window.

Install

DOTk operates on most system running Linux operating systems. DOTk has only been
developed and heavily tested on Redhat Enterprise Linux operating systems with GNU com-
pilers. Additional operating systems and/or compiler combinations have not yet been tested.

Users are expected to complete a series of installation steps before enjoying the spectrum
of solution methods available in DOTk software package. These steps are described as
follows:

1. Download DOTk.
Users can download binary executables for your Linux operating system. Advanced
users can download the source code and customize it to accomodate user specific ca-
pabilities. Contact Miguel A. Aguiló Valent́ın (maguilo@sandia.gov).

2. Install DOTk.1

Edit the following Makefile options:

2.1 C++ Installation

2.1.1 Open the Makefile located inside DOTk’s install directory

1Users are expected to install DOTk software package only if access to the source code is available.
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2.1.3 Set DOTk install directory,
e.g. DOTk INSTALL DIR = PATH TO DOTk INSTALL DIRECTORY

2.1.3 Set GNU compiler,
e.g. CXX = g++

2.1.4 Set GNU compiler flags,
e.g. CXXFLAGS = -O3

2.1.5 Open a terminal window and run make dotk inside DOTk install directory

2.2 Matlab Installation

2.1.1 Open the Makefile located inside DOTk’s matlab directory,
e.g. PATH TO DOTk INSTALL DIRECTORY/matlab

2.1.2 Set DOTk install directory,
e.g. DOTk INSTALL DIR = PATH TO DOTk INSTALL DIRECTORY

2.1.3 Set path to MATLAB-Executable (MEX) compiler,
e.g. MEX = /usr/local/matlab/8.1/bin/mex

2.1.4 Set MEX compiler flag,
e.g. MEX FLAG = -cxx

2.1.5 Set GNU compiler,
e.g. CXX = g++

2.1.6 Set GNU compiler flags,
e.g. CXXFLAGS = -O3

2.1.7 Open a terminal window and run make all inside DOTk matlab directory,
e.g. PATH TO DOTk INSTALL DIRECTORY/matlab

3. Enjoy DOTk software package.
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Chapter 2

Application Programming Interface

DOTk software package was intentionally designed to provide a flexible application pro-
gramming interface (API) that enables easy access to the library’s solution methods from
external software packages. This chapter describes the required APIs to properly commu-
nicate with DOTk software package. Examples are provided to minimize any potential
inconvenience that may arise during the installation process. Current developement exist to
implement a Phyton [13] API.

Gradient-Based Solution Methods

A general constrianed optimization problem is formulated as follows:

minimize
x∈Rn

f(x)

s.t.

g(x) = 0,

h(x) > 0.

(2.1)

DOTk offers a gamut of gradient-based solution methods to solve the optimization problem
in Equation 2.1. DOTk users should select the solution method based on the optimization
problem type.

The optimization problem can be characterized by the type of constraint and by the
linearity or nonlinearity of the objective and constraint functions. An unconstrained op-
timization problem is one that has no constraints. An equality constrained optimiza-
tion problem is one that is required to satisfy all of its constraints exactly, i.e. hard con-
straints. An inequality constrained optimization problem is one that is not required
to satisfy all of its constraints exactly, i.e. soft constraints. A constrained optimization
problem is one that has both equality and inequality constraints. A bound constrained
optimization problem is one that only has upper and lower bound constraints on the
optimization/design variables. The optimization problem can be further characterized as a
linear programming problem (LP) if the objective and equality constraint functions are
linear or as a nonlinear programming problem (NLP) if the objective and constraint
functions are nonlinear. An optimization problem where the objective function is quadratic
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and all of the equality constraints are linear is known as a quadratic programming prob-
lem (QP). The solution methods available in DOTk are designed to solve these types of
optimization problems.

Linear Algebra API

Users are expected to implement four basic algebraic operations to utilize DOTk solution
methods. The four basic algebraic operations are the following:

scal(alpha,x) : αx→ x

axpy(alpha,x,y) : αx+ y → y

innr(x,y) : xTy → output

normF(A) :
√

trace(ATA)→ output

(2.2)

All algebraic operations in DOTk are done with these four linear algebra subroutines. DOTk
users are expected to implement these operations through the linear algebra API. This design
gives users the flexibility to use the default linear algebra API or a custom linear algebra
API, e.g. BLAS [1]. For instance, users can parallelize all inner product operations in
DOTk, which also parallelize all vector norm operations, by just implementing a parallel
inner product subroutine through the linear algebra API.

C++ linear algebra API. The default C++ linear algebra API is shown in Figures 2.1
and 2.2. Users are not expected to implement their own linear algebra API to use DOTk
solution methods. A defualt linear algebra API is already provided to DOTk users. However,
users should be aware that the default linear algebra API implementation is serial. Advanced
users can implement their own C++ linear algebra API as follows:

1. Create a new C++ header file

2. Create a new child class that inherits from parent class DOTk LinearAlgebra

3. Declare and define the four basic algebraic operations in the new child class

Users are given the flexibility to declare and define the algebraic operations subroutines as
preferred.

MATLAB linear algebra API. The default MATLAB linear algebra API is shown in
Figure 2.3. Users are not expected to implement their own MATLAB linear algebra API.
File getLinearAlgbera.m already defines the four basic algebraic operations for DOTk
users. Advanced users can implement their own MATLAB linear algebra API. However,
this requires comprehensive knowledge of MATALB executable (MEX) environment [7]. A
MEX-File provides an interface to non-MATLAB code, e.g. C++ or FORTRAN subroutines.
Once compiled, the non-MATLAB code can be invoked from any MATLAB code as a native
MATLAB function.
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Figure 2.1. C++ linear algebra API child class definition.
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Figure 2.2. C++ linear algebra API child class declara-
tion.

A custom MATLAB linear algebra API can be implemented as follows:

1. Build MEX interface to non-MATLAB code

2. Compile MEX-file

3. Define linear algebra function in file getLinearAlgbera.m

Figure 2.3. MATLAB linear algebra API.
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Operators API

Althought the gradient-based solution methods available in DOTk can have multiple
algorithmic differences, these solution methods can also share many common components.
For instance, first-order and second-order derivative information is required to efficiently
solve Equation 2.1. This information is used to compute the trial step that enables the
update of the new set of optimization/design variables at each iteration. Depending on the
function and derivative information available to users as well as the class of optimization
problem, users are expected to provide the available function and derivative information
through the operators API. The operators API allows DOTk solution methods to access the
function and derivative information that is required to update the set of optimization/design
variables at each iteration.

Unconstrained optimization problems. The basic function and derivative informa-
tion required to efficiently solve unconstrained optimization problems are Fval(z) : f(z)→
output, Fz(z) : Fz(z)→output, Fzz(z) : Fzz(z)→output. The z keyword specifies the con-
trol variables. The Fval(z) keyword specifies the evaluation of the objective function. The
Fz(z) keyword specifies the first derivative of the objective function with respect to the con-
trol variables. The Fzz(z) keyword specifies the derivative of Fz with respect to the control
variables, i.e. second-order derivative.

Table 2.1. Required operators for unconstrained optimiza-
tion problems

Information Operators

None f(z)
1st order f(z), fz(z)
1st and 2nd order f(z), fz(z), fzz(z)

The operators that users are expected to implement to solve unconstrained optimization
problems are outline in Table 2.1. Notice that the requirements change depending on the
derivative information available to the user. If no derivative information is available to the
user, the user is just required to implement the evaluation of the objective function in the
operators API. The finite differencing and quasi-Newton approximation techniques available
in DOTk can be used to respectively approximate the first-order and second-order derivative
information. If first-order derivative information is available to the users, the user is expected
to implement both the objective function evaluation and the first-order derivative information
through the operators API. The quasi-Newton approximation techniques available in DOTk
can be used to approximate the second-order derivative information. Finally, if both first-
order and second-order derivative information is available to the user, the user is expected to
implement the objective function evaluation and both first-order and second-order derivative
information through the operators API.

Constrained optimization problems. The basic functions and derivative information
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required to efficiently solve LP or NLP constrained optimization problems are:

Fval(u,z) : F(u, z)→ output

F u(u,z,output) : Fu(u, z)→ output

F z(u,z,output) : Fz(u, z)→ output

F uu(u,z,s,output) : Fuu(u, z)s→ output

F uz(u,z,s,output) : Fuz(u, z)s→ output

F zz(u,z,s,output) : Fzz(u, z)s→ output

F zu(u,z,s,output) : Fzu(u, z)s→ output

Gval(u,z,output) : G(u, z)→ output

G u(u,z,du,output) : Gu(u, z)du→ output

G z(u,z,dz,output) : Gz(u, z)dz→ output

adjG u(u,z,λ,output) : (adjGu(u, z))Tλ→ output

adjG z(u,z,λ,output) : (adjGz(u, z))Tλ→ output

adjG uu(u,z,λ,du,output) : (adjGuu(u, z)du)Tλ→ output

adjG uz(u,z,λ,dz,output) : (adjGuz(u, z)dz)Tλ→ output

adjG zz(u,z,λ,dz,output) : (adjGzz(u, z)dz)Tλ→ output

adjG zu(u,z,λ,du,output) : (adjGzu(u, z)du)Tλ→ output

The u keyword specifies the state variables. The Fu keyword specifies the first-order deriva-
tive of the objective function with respect to the state variables. The Fuu keyword specifies
the derivative of Fu with respect to the state variables, i.e. second-order derivative. The Fuz

keyword specifies the derivative of Fu with respect to the control variables. The Fzu keyword
specifies the derivative of Fz with respect to the state variables. The Gval keyword specifies
the evalaution of the equality constraint. The Gu keyword specifies the first-order derivative
of the equality constraint with respect to the state variables. The The Gz keyword specifies
the first-order derivative of the equality constraint with respect to the control variables. The
adjGu keyword specifies the first-order derivative of the adjoint of the equality constraint
with respect to the state variables. The adjGz keyword specifies the first-order derivative
of the adjoint of the equality constraint with respect to the control variables. The adjG uu

keyword specifies the derivative of adjGu with respect to the state variables, i.e the second-
order derivative of the adjoint of the equality constraint. The adjGuz keyword specifies the
derivative of adjGu with respect to the control variables. The adjGzz keyword specifies the
derivative of adjGz with respect to the control variables. The adjGzu keyword specifies the
derivative of adjGz with respect to the state variables.

The operators that users are expected to implement to solve LP and NLP constrained
optimization problems are outline in Table 2.2. Analogous to unconstrained optimization
problems, the requirements may change depending on the derivative information avialable
to the user. Users can make use of the finite differencing and quasi-Newton techniques to
respectively approximate first-order second-order derivative information if necessary. By
giving DOTk users the flexibility to define the required function and derivative information
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Table 2.2. Required operators to solve LP and NLP con-
strained optimization problems.

Information Operators

None f(u, z), g(u, z)
1st order f(u, z), fu(u, z), fz(u, z),

g(u, z), gu(u, z), gz(u, z), (gu(u, z))T , (gz(u, z))T

1st and 2nd order f(u, z), fu(u, z), fz(u, z), fuu(u, z), fuz(u, z), fzz(u, z), fzu(u, z)
g(u, z), gu(u, z), gz(u, z), (gu(u, z))T , (gz(u, z))T

(guu(u, z))T , (guz(u, z))T , (gzz(u, z))T , (gzu(u, z))T ,

through one common API, any gradient-based solution method available in DOTk can be
easily used to solve the optimization problem. This added flexibility is one of the unique
feature of DOTk software package.

C++ Operators API. Users are expected to implement the operators API to use DOTk
solution methods. This implementation strictly depends on the function and derivative in-
formation available to the user. The user is not required to implement derivative information
that is not available.1 The C++ operators API can be implemented as follows:

1. Create a new C++ header file

2. Create a new child class that inherits from parent class DOTk Operators

3. Declare and define appropriate operator in new child class

A C++ operators API example for both unconstrained and LP/NLP constrained optimiza-
tion problems are respectively shown in Figures 2.4-2.5 and Figures 2.6-2.7.

MATLAB Operators API. Users are expected to implement the MATLAB operators
API to invoke DOTk solution methods from any MATLAB code. The objective function
operators must be implemented in File getObjectiveFunctionOperators.m and the equal-
ity constraint operators must be implemented in File getEqualityConstraintOperators.m.
The MATLAB operators API for unconstrained and LP/NLP constrained optimization prob-
lems are respectively shown in Figures 2.8 and 2.10.

Advanced users can implement MEX-files to interface non-MATLAB code with MATLAB
code. The basic steps are outline as follows:

1. Build MEX interface to non-MATLAB code that evaluates operators

2. Compile user-defined MEX-file

1The C++ subroutines corresponding to the unavailable derivative informations do not need to be declared
and defined in the operators API child class.
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Figure 2.4. C++ operators API class definition example:
Unconstrained problems.

3. Define operators function in Files getObjectiveFunctionOperators.m and
getEqualityConstraintOperators.m

Solution Operators API

Partial differential equations (PDE) constrained optimization problems of the form:

minimize
(u,z)∈Rnu×Rnz

f(u, z)

s.t.

g(u, z) = 0.

(2.3)

predominate in many engineering applications and are a primary focus of DOTk software
package. The formulation in Equation 2.3 is commonly known as the full-space formulation.
Now, assuming that a twice differentiable function φ : Rnz → Rnu such that g(φ(z), z) =
0 ∀ z ∈ Rnz . If gu(u, z) is invertible, the implicit function theorem guarantees the existence
of φ [6]. The existance of φ(z) enables the reformulation of Equation 2.3 as an unconstrained
optimization problem of the form:

minimize
z∈Rnz

f(φ(z), z) (2.4)
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Figure 2.5. C++ operators API class declaration example:
Unconstrained problems.

This formulation is commonly called the reduce-space formulation.

Users must implement both the linear algebra API and the operators API to properly
solve PDE-constrained optimization problems with DOTk. If a reduced-space formulation is
used, users are also expected to implement the solution operators API. However, the amount
of work depends on the derivative information available to the user. The three possibilities
are outline as follows:

1. No derivative information is available: User must not implement the solution operators
API.

2. First-order derivative information is available: Forward and adjoint solves are essen-
tial to assemble the true gradient operator. Therefore, the user must implement two
solution operators, the forward and adjoint solves required to compute the adjoint field.

3. Both first-order and second-order derivative information is available: Two forward and
adjoint solves are essential to compute the true gradient operator and the application
of the trial step to the true Hessian operator.

A theoretical framework that outlines how these solution operators are derived and used to
solve Equation 2.4 is presented in [2].

C++ Solution Operators API. The C++ solution operators API can be implemented
as follows:
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Figure 2.6. C++ operators API class definition example:
LP and NLP problems.

1. Create a new C++ header file

2. Create a new child class that inherits from parent class DOTk SolutionOperators

3. Declare and define appropriate solution operators in new child class

A C++ solution operators API example is shown in Figures 2.11 and 2.12.

MATLAB Solution Operators API. If a reduced-space formulation is used and derivative
information is available, users must implement the MATLAB solution operators API to
invoke DOTk solution methods from any MATLAB code. The solution operators must be
implemented in File getSolutionOperators.m. The MATLAB solution operators API is
shown in Figure 2.13.

Advanced users can implement MEX-files to interface non-MATLAB code with MATLAB
code. The basic steps are outline as follows:

1. Build MEX interface to non-MATLAB code that evaluates solution operators

2. Compile user-defined MEX-file

3. Define solution operators function in Files getSolutionOperators.m
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Figure 2.7. C++ operators API class declaration example:
LP and NLP problems.

Preconditioner API

The iterative essence of gradient-based solutions methods can encounter multiple nu-
merical challenges in practical settings. Preconditioners are used to transform challenging
optimization problems into problems that are suitable for numerical solution. DOTk pro-
vides users with a preconditioner API that allows them to use a preconditioner of their choice
or implement the essential operators required to enable a DOTk preconditioner. This is one
additional unique feature of DOTk software package.

C++ Preconditioner API. The C++ preconditioner API can be implemented as follows:

1. Create a new C++ header file

2. Create a new child class that inherits from parent class DOTk PreconditionerOperators

3. Declare and define appropriate solution operators in new child class

A C++ preconditioner operators API example for reduced-space and full-sapce PDE-constrained
optimization is respectively shown in Figures 2.14-2.15 and Figures 2.16-2.17. If the user is
interested in using a preconditioner of their choice, the user is not expected to implement the
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Figure 2.8. MATLAB objective function operators API
for unconstrained problems

preconditioner operators needed to enable DOTk preconditioning strategies. The user is just
expected to implement the userDefinedLeftPrec or userDefinedRightPrec subroutines.

MATLAB Preconditioner API. If users wish to use a DOTk-based or user-defined pre-
conditioner, they are expected to implement the essential operators in the MATLAB pre-
conditioner API. The preconditioner API allows running DOTk solution method to pass a
vector into a MATLAB function, apply the vector to the preconditioner operator, and return
the application of the vector to the preconditioner operator to the DOTk solution method
through the preconditioner API. For reduced-space PDE-constrained problems, the precon-
ditioner operators must be implemented in File getReducedSpacePrecOperators.m. For
full-space PDE-constrained problems, the precondtioner operators must be implemented in
File getFullSpacePrecOperators.m. The MATLAB preconditioner API is shown in Figures
2.18 and 2.19.

Advanced users can implement MEX-files to interface non-MATLAB code with MATLAB
code. The basic steps are outline as follows:

1. Build MEX interface to non-MATLAB code that evaluates the application of a vector
to the preconditioner operator

2. Compile user-defined MEX-file
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3. Define appropriate MATLAB functions in File getReducedSpacePrecOperators.m or
getFullSpacePrecOperators.m

If the preconditioner option is USER DEFINED, users are not expected to implement the
essential operators needed to enable DOTk preconditioner strategies.
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Figure 2.9. MATLAB objective function operators API:
LP and NLP problems.
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Figure 2.10. MATLAB equality constraint operators API:
LP and NLP problems.
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Figure 2.11. C++ solution operators API child class def-
inition.
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Figure 2.12. C++ solution operators API child class dec-
laration.

Figure 2.13. MATLAB solution operators API.
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Figure 2.14. C++ preconditioner API child class defini-
tion: Reduced-space PDE-constrained optimization problems

Figure 2.15. C++ preconditioner API child class declara-
tion: Reduced-space PDE-constrained optimization problems
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Figure 2.16. C++ preconditioner API child class defini-
tion: Full-space PDE-constrained optimization problems

35



Figure 2.17. C++ preconditioner API child class declara-
tion: Full-space PDE-constrained optimization problems
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Figure 2.18. MATLAB preconditioner API: Reduced-
space PDE-constrained optimization problems.

37



Figure 2.19. MATLAB preconditioner API: Full-space
PDE-constrained optimization problems.
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Chapter 3

Gradient-Based Optimization

Gradient-based solution methods are highly efficient methods that are well suited for
problems where the objective function is smooth and derivative information can be provided.
The disadvantage of these solution methods is that only local solutions can be guaranteed.
However, to promote the convergence from a remote starting point, DOTk offers several line
search and trust-region methods. The combination of the gradient-based solution methods
and globalization methods available in DOTk results in a vast suit of tools for the solution
of multimodal optimization problems. This chapter describes the parameters that are used
to properly set the solution and globalization methods available in DOTk.

General Use Parameters

C++ API

General use set functions. The general-use set functions are shown in Table 3.1. The
sol::params::space(·)1 data structure stores the optimization problem dimensions, e.g. sol
::params::space struct(dim(z), dim(u), dim(g), dim(h)), where z specifies the con-
trol variables, u specifies the state variables, g specifies the vector of equality constraints, h
specifies the vector of inequality constraints, and dim(·) specifies the argument dimensions.
The setMaxNumOptimizationItr function sets the maximum nuber of optimization it-
erations allow. The setObjectiveFuncTol function sets the stopping criterion due to the
objective function. The setGradientTol function sets the stopping criterion due to the
norm of the gradient. The setTrialStepTol function sets the stopping criterion due to the
norm of the trial step.

1This data structure is only compatible for full-space formulation strategies and hence full-space opti-
mization algorithms. A new interface for a full-space formulation strategy is currently under development
and the sol::params::space(·) data structure will be deprecated. DOTk users will be informed as soon as
this change is made effective
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Table 3.1. Set functions for general use parameters.

Function Argument Default

sol::params::space Integer dim(z)=dim(u)=dim(g)=dim(h)=0
setMaxNumOptimizationItr Real 5000
setObjectiveFuncTol Real 1e-12
setGradientTol Real 1e-8
setTrialStepTol Real 1e-12

MATLAB API

General use parameters. The general-use parameters are shown in Table 3.2. The Num-
Controls keyword specifies the number of control variables, i.e. design variables. The
NumStates keyword specifies the number of state variables, i.e. response quantities (e.g.
displacements). The NumEqConstraints keyword specifies the number of equality con-
straints. The NumIeqConstraints keyword specifies the number of inequality constraints.
The MaxOptimizationItr keyword specifies the maximum number of optimization iter-
ations allow. The ObjectiveFuncTol keyword specifies the stopping criterion due to the
objective function. The GradientTol keyword specifies the stopping criterion due to the
norm of the gradient. The TrialStepTol keyword specifies the stopping criterion due to the
norm of the search direction step.

Table 3.2. Parameters for general-use optimization com-
mands.

Parameter Argument Default

NumControls Integer 0
NumStates Integer 0
NumEqConstraints Integer 0
NumIeqConstraints Integer 0
MaxOptimizationItr Integer 5000
ObjectiveFuncTol Real 1e-12
GradientTol Real 1e-8
TrialStepTol Real 1e-12

Nonlinear Conjugate Gradient

Nonlinear conjugate gradient (CG) methods [4] are first-order methods that are suited
for the minimization of general nonlinear functions. This algorithm is appealing for small
to medium size nonlinear optimization problems since each iteration only requires the eval-
uation of the objective function and its gradient. Unlike linear conjugate gradient meth-
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ods, the convergence properties of nonlinear CG methods are not well understood [8].
The nonlinear CG methods available in DOTk are Fletcher-Reeves (FLETCHER REEVES),
Polak-Ribiere (POLAK RIBIERE), Hestenes-Stiefel (HESTENES STIEFEL), Conjugate Descent
(CONJUGATE DESCENT), Hager-Zhang (HAGER ZHANG), Dai-Liao (DAI LIAO), Dai-Yuan (DAI
YUAN), hybrid Dai-Yuan (DAI YUAN HYBRID), and Perry-Shanno (PERRY SHANNO). Users are
also expected to specify the corresponding line search method commands. However, default
values can always be used.

C++ API

Set functions for nonlinear CG solution methods. The set functions for nonlinear CG
solution methods are shown in Table 3.3. The setSearchDirectionMethod function sets
the method used to compute the search direction. Users can use the set functions in Table
3.3 as follows:

instance.getSearchDirectionPtr()->setFunction(argument),

where instance specifies an object of class DOTk NonLinearCG and both setFunction and
argument are any of the options shown in Table 3.3.

Table 3.3. Set functions for nonlinear conjugate gradient
solution method.

Function Argument Default

setSearchDirectionMethod dotk::types::direction t dotk::types::
HAGER ZHANG

MATLAB API

Parameters for nonlinear CG solution methods. The parameters for nonlinear CG
solution methods are shown in Table 3.4. The SearchDirectionMethod keyword spec-
ifies the method used to compute the search direction. Figure 3.1 shows the source code
for function getSearchDirectionOptions. This function is defined and declared in file
getOptimizationOptions.m. This file denotes the MATLAB input file for DOTk. DOTk
users should expect to have access to this file as part of the DOTk package.

Table 3.4. Parameters for nonlinear conjugate gradient
solution method.

Parameter Argument Default

SearchDirectionMethod String HAGAR ZHANG
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Figure 3.1. Function getSearchDirectionOptions source
code.

Quasi-Newton

Quasi-Newton methods are first-order methods that only require the gradient of the
objective function at each iteration. This information can be used to construct an approxi-
mation to the inverse of the Hessian operator. In practice, quasi-Newton methods have been
observed to produce superlinear convergence [8]. In cases when second-order information is
not available, quasi-Newton methods are a good choice for solving optimization problems.
DOTk gives users the flexibility to specify an user-defined inverse of the Hessian operator by
using the keyword USER DEFINED INV HESS. The inverse of the Hessian is defined through
the operators API described in Chapter 1. Users are also expected to specify the parameters
for the line search or trust region method of choice to properly enable quasi-Newton solution
methods in DOTk.

C++ API

Set functions for quasi-Newton solution methods. The set functions for quasi-Newton
solution methods are shown in Table 3.5. The setInvHessianOperator function sets the
approximation method used to compute the inverse Hessian operator required to solve for
the trial step sk, i.e.

sk = (∇2F (xk))−1∇F (xk). (3.1)

instance.setFunction(argument),
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where instance specifies an instance of class DOTk QuasiNewton and setFunction and
argument are any of the options shown in Table 3.5. Users can use the set functions in Table
3.5 as follows:

Table 3.5. Set function for quasi-Newton solution method.

Function Argument Default

setInvHessianPtr dotk::types::invhessian t dotk::types::IDENTITY
Integer 0

The second argument in set function setInvHessianPtr denotes the maximum number
of gradient information stored to approximate the inverse Hessian operator. In practice, a
value between 4 and 10 is typically used.

MATLAB API

Parameters for quasi-Newton solution methods. The parameters for quasi-Newton
solution methods are given in Table 3.6. The InvHessianOperator keyword specifies the
approximation method used to compute the inverse of the Hessian operator. This operator
is require to solve Equation 3.1. The MaxLimitedMemoryStorage keyword specifies the
maximum number of gradient information stored to approximate the inverse of the Hessian
operator.

Table 3.6. Parameters for quasi-Newton solution method.

Parameter Argument Default

InvHessianOperator String IDENTITY
MaxLimitedMemoryStorage Integer 0

Line Search Newton Conjugate Gradient

Line search Newton conjugate gradient methods [8], also known as truncated CG meth-
ods, are appropriate for large-scale unconstrained optimization problems. PDE-constrained
optimization problems of the form shown in Equation 2.3 can also be efficiently solved with
line search Newton CG methods. By employing a reduced-space formulation, the optimiza-
tion problem in Equation 2.3 can be converted into an unconstrained optimization problem
of the form shown in Equation 2.4.

Users can apply quasi-Newton techniques to approximate the Hessian operator when
second-order derivative information is not available. However, users should keep in mind
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that the second-order convergence rate associated with true Newton methods will be affected
by the quasi-Newton approximation to the Hessian. Finally, users are expected to set the
line search parameters and the method/approach used to compute the gradient and Hessian
operators to enabled the line search Newton CG methods in DOTk. If a preconditioning
strategy is enabled, users are also expected to specify the type of preconditioner strategy
used for the problem.

C++ API

Set functions for line search Newton CG solution methods. The set functions for
line search Newton CG solution methods are shown in Table 3.7. The setMaxNumCGItr
function sets the maximum number of inner CG iterations allow to compute the trial step.
The setCGRelativeTol keyword specifies the relative tolerance used to compute the inner
CG loop stopping criterion. Users can use the set functions in Table 3.7 as follows:

instance.setFunction(argument),

where instance specifies an object of class DOTk LineSearchNewtonCG and both setFunction

and argument are any of the options shown in Table 3.7.

Table 3.7. Set functions for line search Newton conjugate
gradient solution method.

Function Argument Default

setMaxNumCGItr Integer 200
setCGRelativeTol Real 1e-2

MATLAB API

Parameters for line search Newton CG solution methods. The parameters for line
search Newton CG solution methods are shown in Table 3.8. The MaxNumCGItr keyword
specifies the maximum number of inner CG iterations allow to compute the trial step. The
RelativeTol keyword specifies the relative tolerance used to compute the inner CG loop
stopping criterion.

Trust-Region Newton Conjugate Gradient

The trust-region Newton conjugate gradient method implemented in DOTk is due to
Steinhaug [14]. This solution method is well suited for large-scale unconstrained optimization
problems as well as PDE-constrained optimization problems solved using a reduced-space
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Table 3.8. Parameters for line search Newton conjugate
gradient solution method.

Parameter Argument Default

MaxNumCGItr Integer 200
RelativeTol Real 1e-2

formulation. In trust-region methods the trial step is computed by solving a trust-region
subproblem of the form

minimize
s∈Rn

1

2
sT∇2f(xk)s + (∇f(xk))T s + f(xk)

subject to

‖s‖ ≤ ∆k.

(3.2)

Users can apply quasi-Newton techniques to approximate the Hessian operator when second-
order derivative information is not available. However, this approximation will impact the
second-order convergence rate associated with true Newton methods. Users are expected to
specify the trust-region method parameters and the method used to compute the gradient
and Hessian operators. If a preconditioning strategy is enabled, users are also expected to
specify the type of preconditioning strategy used for the problem.

C++ API

Set functions for trust-region Newton CG solution methods. The set functions for
trust-region Newton CG solution methods are shown in Table 3.7. Users can use the set
functions in Table 3.7 as follows:

instance.setFunction(argument),

where instance specifies an instance of class DOTk TrustRegionNewtonCG and both setFunc-

tion and argument are any of the options shown in Table 3.7.

MATLAB API

Parameters for trust-region Newton CG solution methods. The parameters for
trust-region Newton CG solution methods are shown in Table 3.8.
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Inexact Trust-Region Sequential Quadratic Programming

The inexact trust-region Sequential Quadratic Programming (SQP) solution method [10]
is well suited for the solution of constrained optimization problems such as large-scale PDE-
constrained optimization problems [5, 11]. However, this solution method can be used to
solve a vast range of constrained optimization problems encounter in many engineering appli-
cations. The inexact trust-region SQP solution method computes an approximate solution of
the nonlinear programming problem by solving a sequence of quadratic subproblems which
are built from a quadratic model of the Lagrangian and a linear Taylor approximation of the
constraints. The advantage of this solution method is the efficient handling of the inherent
inexactness due to the iterative solves performed to compute the trial step. Users are ex-
pected to specity the trust-region method parameters and the method used to compute the
gradient and Hessian operators to enable the inexact trust-region SQP solution method. If
a preconditioner strategy strategy is enabled, users are also expected to specify the type of
preconditioning strategy used for the problem.

C++ API

Set functions for the inexact trust-region SQP solution method. The set functions
for the inexact trust-region SQP solution method are shown in Table 3.9. The setTangen-
tialSubProblemMaxItr function sets the maximum number of CG iterations allow to com-
pute the effective tangential step. The sol::solver::krylov params(·)2 data structure sets
the maximum number of iterations allow to solve the augmented system problem, restart fre-
quency, and the problem dimensions, e.g. sol::solver::krylov params struct(dim(u),

dim(g), max itr, restart freq). The restart feature is inactive by default. The setCon-
straintTol function sets the inexact trust-region SQP stopping criterion for the norm of the
constraint. The setQuasiNormalTol function sets the stopping criterion in the quasi-
normal step computation. The setTangentialTol function sets the stopping criterion in
the corrected tangential step computation. The setTangentialSubProblemProjection-
Tol function sets the tangential subproblem projected gradient tolerance. This stopping
criterion is used in the computation of the effective tangential step. The setLagrange-
MultipliersTol keyword specifies the stopping criterion in the computation of the lagrange
multipliers. The setLagrangeMultipliersGradTol function sets an upper bound on the
stopping criterion used for the computation of the lagrange multipliers. The setOrthogo-
nalityTol function sets stopping criterion used to control the inexactness cumulative effect
due to the null-space projections. This stopping criterion is used in the computation of the
effective tangential step. The setTangentialTolReductionFactor function specifies an
internal reduction factor use to reduce the stopping criterion in the computation of the cor-
rected tangential step. The setTolReductionFactor function sets a reduction factor used
to adjust the stopping criterion for the augmented system solve required to compute the

2A new Krylov solver interface is under development and hence the sol::solver::krylov params (·)data
structure will be deprecated as soon as the new Krylov solver interface is made available to DOTk users.
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quasi-normal step, effective tangential step, corrected tangential step, and lagrange multipli-
ers. The setActualOverPredictedReductionParam function sets the stopping criterion
used to determine if the trial step gives sufficient reduction in the merit function. The
setQuasiNormalTrustRegionFractionParam function sets the trust-region reduction
parameter in the computation of the quasi-normal step. The setAllowedEffectiveTan-
gentialOverTrialStepParam function sets the trust region subpoblem stopping criterion
due to the ratio between the effective tangential step and the trial step.

Users can use the set functions in Table 3.9 as follows:

instance.setFunction(argument),

where instance specifies an instance of class DOTk InexactSQP and setFunction and argument

are any of the options shown in Table 3.9.

Table 3.9. Set functions for inexact trust-region sequential
quadratic programming solution method.

Function Argument Default

setTangentialSubProblemMaxItr Integer 200
setConstraintTol Real 1e-10
setQuasiNormalTol Real 1e-4
setTangentialTol Real 1e-4
setProjectionTol Real 1e-4
setLagrangeMultipliersTol Real 1e-4
setLagrangeMultipliersGradTol Real 1e4
setOrthogonalityTol Real 0.5
setTangentialTolReductionFactor Real 1e-3
setTolReductionFactor Real 1e-1
setActualOverPredictedReductionParam Real 1e-8
setQuasiNormalTrustRegionFractionParam Real 0.8
setAllowedEffectiveTangentialOverTrialStepParam Real 2.
sol::solver::krylov params Integer dim(u)=0

Integer dim(g)=0
Integer max itr=200
Integer restart freq=-1

MATLAB API

Parameters for the inexact trust-region SQP solution method. The parameters for
the inexact trust-region SQP solution method are shown in Table 3.10. The TangentialSub-
ProblemMaxItr keyword specifies the maximum number of CG iterations allow to compute
the effective tangential step. The MaxKrylovSolverItr specifices the maximum number
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of Krylov iterations allow to solve the augmented system problem. The KrylovRestar-
tItr specifies the restart frequency for the Krylov solver. Recall that the restart feature
is inactive by default. The ConstraintTol keyword specifies the inexact trust-region SQP
stopping criterion for the norm of the constraint. The QuasiNormalTol keyword specifies
the iterative solver stopping criterion in the quasi-normal step computation. The Tangen-
tialTol keyword specifies the iterative solver stopping criterion in the corrected tangential
step computation. The ProjectionTol keyword specifies the projected gradient tolerance.
This stopping criterion is used in the effective tangential step computation. The Lagrange-
MultipliersTol keyword specifies the iterative solver stopping criterion in the lagrange
multipliers computation. The LagrangeMultipliersGradTol keyword specifies an upper
bound on the solver stopping criterion used in the computation of the lagrange multipliers.
The OrthogonalityTol keyword specifies a stopping criterion used to control the cumula-
tive effect of inexactness due to the null-space projections. This stopping criterion is used
in the computation of the effective tangential step. The TangentialTolReductionFactor
keyword specifies a reduction factor used to decrease the solver stopping criterion in the
computation of the corrected tangential step. The TolReductionFactor keyword specifies
a reduction factor used to adjust the stopping criterion for the augmented system solve re-
quired to compute the quasi-normal step, effective tangential step, corrected tangential step,
and lagrange multipliers. The ActualOverPredictedReductionParam keyword speci-
fies the stopping criterion used to determine if the trial step gives sufficient reduction in
the merit function. The QuasiNormalTrustRegionFractionParam keyword specifies a
conservative trust-region reduction parameter used in the computation of the quasi-normal
step. The MaxEffectiveTangentialOverTrialStepParam keyword specifies the trust-
region subpoblem stopping criterion due to the ratio between the effective tangential step
and the trial step.

Gradient Calculation

Gradient-based solution methods require first-order derivative information, i.e. gradient,
to find an optimum to the optimization problem. There are cases where first-order derivative
information is available to the user and is reasonable to expect the user to provide this
information to DOTk solution methods. However, there are cases where first-order derivative
information is not available to the user and other approaches, such as finite differencing, are
needed to solve the optimization problem.

The finite differencing options available in DOTk are forward difference, backward differ-
ence, and central difference. DOTk provides users with a flexible interface that enable the
parallelization of the finite diferencing techniques available in DOTk.
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Table 3.10. Parameters for inexact trust-region sequential
quadratic programming solution method.

Parameter Argument Default

TangentialSubProblemMaxItr Integer 200
MaxKrylovSolverItr Integer 200
KrylovRestartItr Integer -1
ConstraintTol Real 1e-10
QuasiNormalTol Real 1e-4
TangentialTol Real 1e-4
ProjectionTol Real 1e-4
LagrangeMultipliersTol Real 1e-4
LagrangeMultipliersGradTol Real 1e4
OrthogonalityTol Real 0.5
TangentialTolReductionFactor Real 1e-3
TolReductionFactor Real 1e-1
ActualOverPredictedReductionParam Real 1e-8
QuasiNormalTrustRegionFractionParam Real 0.8
MaxEffectiveTangentialOverTrialStepParam Real 2.

C++ API

Set functions for gradient computation. The set functions needed to select the method
used to compute the gradient operator are shown in Table 3.11. The setGradientOperator
function sets the method used to compute the gradient operator. The options keyword are
the following:

1. dotk::types::FORWARD DIFFERENCE GRAD,

2. dotk::types::BACKWARD DIFFERENCE GRAD,

3. dotk::types::CENTRAL DIFFERENCE GRAD,

4. dotk::types::USER DEFINED GRAD,

5. dotk::types::PARALLEL FORWARD DIFFERENCE GRAD,

6. dotk::types::PARALLEL BACKWARD DIFFERENCE GRAD,

7. dotk::types::PARALLEL CENTRAL DIFFERENCE GRAD.

The setFiniteDifferencePerturbationVec function sets the vector of finite positive per-
turbations. The dimensions of the vector is equal to the number of optimization/design
variables. DOTk users can set the gradient operator as follows:

instance.setGradientPtr(dotk::types:gradient t),
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where the default gradient operator is set to dotk::types::USER DEFINED GRAD. Thus,
DOTk expects users to provide an user defined gradient operator, i.e. analytical gradi-
ent, to solve the optimization problem of interest. DOTk users can set the gradient operator
as follows:

instance.getGradientPtr()->setFunction(argument),

where instance specifies a DOTk solution method class object, getGradientPtr() returns
a C++ shared pointer that grants access to all the public functions in class DOTk Gradient,
and both setFunction and argument are any of the options shown in Table 3.11.

Table 3.11. Set functions for gradient computation.

Function Argument Default

setFiniteDifferencePerturbationVec std::vector<Real> 1e-6

MATLAB API

Parameters for gradient computation. The parameters needed to select the method
used to compute the gradient gradient are shown in Table 3.12. The GradientOpera-
tor keyword specifies the technique used to compute the gradient operator. The options are
FORWARD DIFFERENCE GRAD, BACKWARD DIFFERENCE GRAD, CENTRAL DIFFERENCE GRAD, USER-
DEFINED GRAD, PARALLEL FORWARD DIFFERENCE GRAD, PARALLEL BACKWARD DIFFERENCE GRAD,

and PARALLEL CENTRAL DIFFERENCE GRAD. The FiniteDifferencePerturbation keyword
specifies a finite positive perturbation. Figure 3.2 shows the source code for function
getGradientOperatorOptions. Function getGradientOperatorOptions is defined and de-
clared in file getOptimizationOptions.m. DOTk users are expected to modified the key-
words to set desired gradient operator options.

Table 3.12. Parameters for gradient computation.

Parameter Argument Default

GradientOperator String USER DEFINED GRAD
FiniteDifferencePerturbation Real 1e-6

Hessian Calculation

Users are always recommended to provide second-order derivative information, e.g. Hes-
sian, to exploit the fast convergence rates of DOTk solution methods. However, there are
occasions where users cannot provide second-order derivative information. For such cases,
DOTk provides useful quasi-Newton techniques to approximate the Hessian or inverse of the
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Figure 3.2. Function getGradientOperatorOptions
source code.

Hessian operators. The quasi-Newton methods available in DOTk are Broyden-Fletcher-
Goldfarb-Shanno (BFGS), limited-memory BFGS (LBFGS), limited-memory Davidon-Fletcher-
Powell (LDFP), symmetric-rank-one (SR1), and limited-memory SR1 (LSR1). DOTk also offers
an additional capability that allow users to approximate the Hessian operator by applying
a forward finite difference (FORWARD FD HESS) technique.

C++ API

Set functions for quasi-Newton approximation methods. The set functions for
the quasi-Newtonapproximantion methods are shown in Table 3.13. The setHessianPtr(
dotk::types::hessian t, Integer) is used to set the method to compute the application of
a vector to the Hessian operator. The available hessian t options are:

1. dotk::types::LBFGS HESS

2. dotk::types::LDFP HESS

3. dotk::types::LSR1 HESS

4. dotk::types::SR1 HESS

5. dotk::types::DFP HESS
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6. dotk::types::IDENTITY HESS

7. dotk::types::USER DEFINED HESS

8. dotk::types::FORWARD FD HESS

The setInvHessianPtr(dotk::types::invhessian t, Integer) function sets the method
used to compute the application of a vector to the inverse of the Hessian operator. The
available invhessian t options are:

1. dotk::types::LBFGS INV HESS

2. dotk::types::LDFP INV HESS

3. dotk::types::LSR1 INV HESS

4. dotk::types::SR1 INV HESS

5. dotk::types::BFGS INV HESS

6. dotk::types::IDENTITY INV HESS

7. dotk::types::USER DEFINED INV HESS

The second argument in both setHessianPtr and setInvHessianPtr functions is used
to specify the maximum number of gradient information stored to approximate the quasi-
Newton Hessian and inverse of the Hessian operators. This value is set to zero by default and
hence users are expected to specify this number if a quasi-Newton Hessian approximation
method is utilized.

Users can use the set functions in Table 3.13 to set additional options as follows:

instance.getHessianPtr()->setFunction(argument),

instance.getInvHessianPtr()->setFunction(argument),

where instance specifies a DOTk solution method class object, getHessianPtr() and
getInvHessianPtr() return a C++ shared, i.e. smart, pointer that grants access to all the
public functions of class DOTk Hessian and DOTk InvHessian, respectively. The setFunction
and argument are any of the options shown in Table 3.13.

Table 3.13. Set functions for quasi-Newton approximation
methods.

Function Argument Default

setMaxLimitedMemoryStorage Integer 0
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MATLAB API

Parameters for quasi-Newton approximation methods. The parameters for quasi-
Newton approximation methods are shown in Table 3.14. The HessianOperator key-
word specifies the quasi-Newton technique used to approximate the Hessian. The available
options are LBFGS HESS, LDFP HESS, LSR1 HESS, SR1 HESS, DFP HESS, IDENTITY HESS, and
USER DEFINED HESS. The InvHessianOperator keyword specifies the quasi-Newton tech-
nique used to approximate the inver of the Hessian. The available options are LBFGS INV HESS,
LDFP INV HESS, LSR1 INV HESS, SR1 INV HESS, BFGS INV HESS, IDENTITY INV HESS, USER DEFINED INV HESS,
and FORWARD FD HESS. The MaxLimitedMemoryStorage keyword specifies the maximum
number of gradient information stored to compute the quasi-Newton approximation of the
second-order derivative information. Figures 3.3 and 3.4 respectively show the source code
for functions getHessianOperatorOptions and getInvHessianOperatorOptions. These
functions are defined and declared in file getOptimizationOptions.m. DOTk users should
expect to have access to the MATLAB input file, i.e. getOptimizationOptions.m.

Table 3.14. Parameters for quasi-Newton approximation
methods.

Parameter Argument Default

HessianOperator String USER DEFINED HESS
InvHessianOperator String IDENTITY INV HESS
MaxLimitedMemoryStorage Integer 0

Figure 3.3. Function getHessianOperatorOptions source
code.
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Figure 3.4. Function getInvHessianOperatorOptions
source code.

Line Search Methods

Line search methods promote the convergence of gradient-based solution methods from
a remote starting point. These methods are used to find the suitable scaled search direction
along which the objective function will be optimize. The step size used to scale the search
direction is choosen such that certain criteria are satisfied.

C++ API

Set functions for line search methods. The set functions used to defined the line search
method parameters are shown in Table 3.15. The setStepPtr(dotk::types::linesearch t)
allows users to select the line search method used to compute the optimal step size. The
available options are:

1. dotk::types::BACKTRACKING ARMIJO

2. dotk::types::BACKTRACKING GOLDSTEIN

3. dotk::types::BACKTRACKING CUBIC INTRP

4. dotk::types::BACKTRACKING HAGER ZHANG

5. dotk::types::GOLDENSECTION

DOTk users can set the line search method as follows:

instance.setStepPtr(dotk::types::linesearch t),

54



where instance specifies a DOTk solution method class object. The defualt line search
method is set to dotk::types::BACKTRACKING CUBIC INTRP.

DOTk users can set additional line search options by using the line search set functions
in Table 3.15 as follows:

instance.getLineSearchPtr()->setFunction(argument).

Here, instance specifies a DOTk solution method class object, getStepPtr() returns a
C++ shared pointer that grants access to all the public functions in class DOTk LineSearch,
and both setFunction and argument are any of the options shown in Table 3.15. The
setMaxNumIterations function sets the maxmimum number of line search iterations per-
formed and hence the number of additional objective function evaluations done to compute
the optimal step size. The setStepTolerance function sets the minimum step size allow.
The setContractionFactor function sets how much the step size is contracted at each line
search iteration.

Table 3.15. Set functions for line search methods.

Function Argument Default

setMaxNumIterations Integer 50
setStepTolerance Real 1e-8
setContractionFactor Integer 0.5

MATLAB API

Parameters for line search methods. The parameters for line search methods are shown
in Table 3.16. The LineSearchMethod keyword specifies the line search method used
to compute the step size. The line search methods keywords are BACKTRACKING ARMIJO,
BACTRACKING GOLDSTEIN, BACKTRACKING CUBIC INTRP BARZILAI BORWEIN, and GOLDENSEC-

TION. The MaxLineSearchItr keyword specifies the maxmimum number of objective func-
tion evaluations allow to compute the optimal step size. The LineSeachStepTol keyword
specifies the minimum step size allow. The LineSearchContractionFactor keyword spec-
ifies how much the step size is contracted in each line search iteration. Figure 3.5 shows the
source code for the getLineSearchOptions function in file getOptimizationOptions.m.
This file is available/provided to DOTk users, i.e. MATLAB input file to DOTk.

Trust-Region Methods

Trust-region methods, similar to line search methods, promote the convergence of gradient-
based solution methods from a remote starting point. The basis for trust-region methods is
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Table 3.16. Parameters for line search methods.

Parameter Argument Default

LineSearchMethod String BACKTRACKING CUBIC INTRP
MaxLineSearchItr Integer 50
LineSeachStepTol Real 1e-8
LineSearchContractionFactor Integer 0.5

Figure 3.5. Line search method options.

to define a model that adequately represents the objective function in a trustworthy region
around the current iterate. This model is then used to find the search direction that min-
imizes the model inside this trusted region. If the search direction is not appropriate, the
trust region is reduced and a new search direction that minimizes the model is computed.

C++ API

Set functions for trust region methods. The set functions used to defined the trust
region method parameters are shown in Table 3.17. The setTrustRegionStepPtr(dotk::
types::trustregion t) allows users to select the trust region method used to compute the
optimal trust region radius at each iteration. The available trust region methods are:

1. dotk::types::DOGLEG

2. dotk::types::DOGLEG HYBRID
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3. dotk::types::DOUBLE DOGLEG

4. dotk::types::DOUBLE DOGLEG HYBRID

5. dotk::types::STEP DISABLED

DOTk users can then set the trust region method as follows:

instance.setTrustRegionStepPtr(dotk::types::trustregion t),

where instance specifies a DOTk solution method class object. The defualt trust region
method is set to dotk::types::STEP DISABLED and hence DOTk users have to specify the
trust region method by default.

The set functions used to specify additional options for trust-region methods are shown
in Table 3.17. The setMaxTrustRegionSubProblemIterations function sets the maxi-
mum number of trust-region iterations allow. The setMaxTrustRegionRadius function
sets the maximum trust-region radius allow. The setMinTrustRegionRadius function
sets the minimum trust-region radius allow. The setTrustRegionRadius function sets the
starting trust-region radius. The setMinimumActualReductionRatioAllowed function
sets the minimum threshold for the ratio between the actual and predicted reduction. The
setContractionParameter function sets how much the trust-region radius is contracted
if the ratio between the actual and predicted reduction is less than a threshold. The set-
ExpansionParameter function sets how much the trust-region radius is expanded if the
ratio between the actual and predicted reduction is greater than the ratio threshold. Hybrid
trust region methods have additional set functions. The setMaxLineSearchIterations
function sets the maximum number of line search iterations. The setLineSearchConstant
sets the armijo constant. The setLineSearchStepTolerance sets the minimum line search
step allowed. The setLineSearchContractionFactor sets the line search step contraction
parameter.

Users can use the set functions in Table 3.17 as follows:

instance.getTrustRegionStepPtr()->setFunction(argument),

where instance specifies an object of class DOTk InexactSQP, DOTk TrustRegionNewtonCG,
or DOTk TrustRegionQuasiNewton. The getTrustRegionStepPtr function returns a C++
shared pointer that grants access to all the public functions in the trust region class. The
setFunction and argument are any of the options shown in Table 3.17.

MATLAB API

Parameters for trust-region methods. The TrustRegionMethod keyword is used
to specify the trust region method apply to solve the problem. The available trust region
method options are TRUST REGION DOGLEG, TRUST REGION DOGLEG HYBRID, TRUST REGION
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Table 3.17. Set functions for trust-region methods.

Function Argument Default

setMaxTrustRegionSubProblemIterations Integer 50
setMaxTrustRegionRadius Real 1e4
setMinTrustRegionRadius Real 1e-8
setTrustRegionRadius Real 1e4
setMinimumActualReductionRatioAllowed Real 0.25
setContractionParameter Real 0.5
setExpansionParameter Real 2.0
setMaxLineSearchIterations Integer 50
setLineSearchConstant Real 1e-4
setLineSearchStepTolerance Real 1e-8
setLineSearchContractionFactor Real 0.5

DOUBLE DOGLEG, and TRUST REGION DOUBLE DOGLEG HYBRID. The additional trust region pa-
rameters are given in Table 3.18. The MaxTrustRegionItr keyword specifies the max-
imum number of trust-region iterations allow. The MaxTrustRegionRadius keyword
specifies the maximum trust-region radius allow. The MinTrustRegionRadius keyword
specifies the minimum trust-region radius allow. The TrustRegionRadius keyword spec-
ifies the starting trust-region radius. The AllowableMinimumActualReductionRatio
keyword specifies the minimum threshold for the ratio between the actual and predicted
reduction. The TrustRegionRadiusContractionParam keyword specifies how much the
trust-region radius is contracted if the ratio between the actual and predicted reduction
is less than a threshold. The TrustRegionRadiusExpansionParam keyword specifies
how much the trust-region radius is expanded if the ratio between the actual and predicted
reduction is greater than the ratio threshold. Figure 3.6 shows the source code for the
getTrustRegionOptions function in file getOptimizationOptions.m. This file is avail-
able/provided to DOTk, i.e. MATLAB input file to DOTk.

Table 3.18. Parameters for trust-region methods.

Parameter Argument Default

MaxTrustRegionItr Integer 50
MaxTrustRegionRadius Real 1e4
MinTrustRegionRadius Real 1e-8
TrustRegionRadius Real 1e4
AllowableMinimumActualReductionRatio Real 0.25
TrustRegionRadiusContractionParam Real 0.5
TrustRegionRadiusExpansionParam Real 2.0
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Figure 3.6. Trust region method options.

Preconditioning Strategies

The current version of DOTk provides several preconditioning options for full-space PDE-
constrained optimization problems [9]. Users are expected to implement the essential oper-
ators to enable these preconditioners. However, there is ongoing research to explore suitable
preconditioning strategies for reduced-space and full-sapce PDE-constrained problems. The
ultimate goal is to facilitate multiple preconditioning strategies without users having to pro-
vide the essential operators.

C++ API

Set functions for preconditioning strategies. The set functions used to specify the pre-
conditioning strategies are shown in Table 3.19. The setLeftPreconditionerType function
sets the left preconditioning strategy, i.e. P−1(Ax− b) = 0. The left preconditioning strate-
gies for reduced-space PDE-constrained optimization problems are:

1. dotk::types::NO PREC

2. dotk::types::USER DEFINED PREC
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The left preconditioning strategies for full-space PDE-constrained optimization problems
are:

1. dotk::types::NO PREC

2. dotk::types::USER DEFINED PREC

3. dotk::types::FULL SCHUR PREC

4. dotk::types::INCOMPLETE SCHUR PREC

The setRightPreconditionerType function sets the right preconditioning strategy, i.e.
AP−1Px = b. The right preconditioning strategies available in DOTk for both reduced-
space and full-space PDE-constrained optimization are:

1. dotk::types::NO PREC

2. dotk::types::USER DEFINED PREC

Users can set the preconditioning strategy as follows:

1. Define a C++ shared pointer that owns a pointer to a child class of parent class
DOTk PreconditionerOperators, see Preconditioner API subsection in Chapter 2, as
follows:

std::tr1::shared ptr<ChildClass> sptr(new ChildClass()),

where ChildClass specifies the child class name and sptr is an object of std::tr1::
shared ptr.

2. Define a C++ shared pointer that owns a pointer to a DOTk preconditioner API as
follows:

std::tr1::shared ptr<PrecAPI> sptr(new PrecAPI(PrecOp, ParamSpace)),

where PrecAPI is a DOTk FullSpacePrecInterface or DOTk ReducedSpacePrecInter-

face object, PrecOp is the C++ shared pointer defined in Step 1, and ParamSpace

is a sol::params::space3 data structure, see the General use parameters section in
Chapter 3.

3. Use functions in Table 3.19 to set the preconditioning strategy as follows:

sptr->setFunction(argument),

where sptr is the C++ shared pointer defined in Step 2 and both setFunction and
argument are options defined in Table 3.19.

3A new full-space interface is currently under development and hence the current full-space formulation
strategy interface will be deprecated as soon as the new interface is available to DOTk users.
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Table 3.19. Set functions for preconditioning strategies.

Function Argument Default

setLeftPreconditionerType dotk::types::preconditioner t NO PREC
setRightPreconditionerType dotk::types::preconditioner t NO PREC

MATLAB API

Parameters for preconditioning strategies. The parameters to specify a precondition-
ing strategy are shown in Table 3.20. The LeftPreconditionerType keyword specifies
the left preconditioning strategy. The available left preconditioning strategies for reduced-
space PDE-constrained optimization problems are NO PREC and USER DEFINED PREC. The
available left preconditioning strategies for full-space PDE-constrained optimization prob-
lems are NO PREC, USER DEFINED PREC, FULL SCHUR PREC, and INCOMPLETE SCHUR PREC. The
RightPreconditionerType keyword specifies the right preconditioning strategy. The right
preconditioning strategies available in DOTk for both reduced-space and full-space PDE-
constrained optimization are NO PREC and USER DEFINED PREC. Figures 3.7 and 3.8 show the
source code for functions getFullSpaceLeftPrecOptions and getFullSpaceRightPrecOp-

tions. These functions are defined and declared in file getOptimizationOptions.m.

Table 3.20. Parameters for preconditioning strategies.

Parameter Argument Default

LeftPreconditionerType String NO PREC
RightPreconditionerType String NO PREC

Figure 3.7. Function getFullSpaceLeftPrecOptions
source code.
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Figure 3.8. Function getFullSpaceRightPrecOptions
source code.
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Chapter 4

Constraint Modeling

Constrained optimization is the process of optimizing an objective function with respect
to a set of design variables in the existence of constraints. These problems can be classified
as equality-constrained, inequality-constrained, constrained (both equality and inequality
constraints are existent), and bound-constrained optimization problems. DOTk offers users
several constraint modeling methods to solve these class of optimization problems.

Bound Constraints

Lets consider the constrained optimization problem of the form

min f(x) s.t. x ∈ X,

where

1. X is a convex and close space defined as X = {x | a ≤ x ≤ b}

2. f : X → R is continuously differentiable over X.

The solution methods that are often applied to solve unconstrained optimization problems,
combined with the appropriate bound constraint modeling techniques, can be easily applied
to solve the resulting bound constrained optimization problem.

DOTk offers users several alternative to solve bound-constrained optimization problems.
The bound-constraint modeling methods available to DOTk users are feasible direction,
minimum reduction on feasible direction, projection of scaled direction into feasible set, and
minimum reduction of projected scaled direction into feasible set. DOTk users are referred to
Bertsekas book [3] for a great theoretical discussion on these methods. Users are reminded
that these bound-constraint modeling methods only apply to bound constraints and thus should
not be applied to solve inequality constrained optimization problems. Furthermore, these
methods should only be used to solve reduced-space optimization problems. Interior-point
methods, i.e. barrier methods, are the suitable constraint modeling approach to solve gen-
eral constrained optimization problems. These constraint modeling techniques are currently
under development and should be available to DOTk users in the next DOTk release.
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C++ API

Set functions for bound constraint modeling methods. The set function used to
enable bound constraint optimization are shown in Table 4.1. The setControlBounds
function sets the n-dimensional arrays of lower and upper bounds. This automatically sets
the ActiveBoundConstraint flag to true. This flag is set to false by default. Users can
use the set functions in Table 4.1 as follows:

instance.setControlBounds(argument),

where instance specifies a DOTk vector space class object, e.g. dotk::DOTk VectorSpace-

Reduced vectorSpace. Thus, the bounds on the control are managed by the dotk::DOTk

VectorSpaceReduced class manager. This class is in charge of managing the data struc-
ture for all the solution methods used to solve reduced-space optimization problems. The
argument keyword denotes any of the options shown in Table 4.1.

DOTk users can set the bound constraint modeling method as follow

instance.setConstraintPtr(dotk::types::constraint t),

where instance denotes a class object from any of the reduced-space solution methods
available in DOTk. The available dotk::types::constraint t options are

1. dotk::types::CONSTRAINT OFF

2. dotk::types::BOUND FEASIBLE DIRECTION

3. dotk::types::BOUND FEASIBLE DIRECTION MIN REDUCTION

4. dotk::types::BOUND PROJECT SCALED DIRECTION

5. dotk::types::BOUND PROJECTION ALONG FEASIBLE DIRECTION

Bound constraint are disabled by default and hence DOTk users have to enable bound
constraints to solve a bound constraint optimization problem.

Table 4.1. Set functions for bound constraint modeling
methods

Function Argument Default

setControlBounds std::vector<Real> Inactive
std::vector<Real> Inactive
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MATLAB API

Parameters for bound constraint modeling methods. The parameters that enable
bound constraint optimization are shown in Table 4.2. The ConstraintMethod keyword
specifies the bound constraint modeling method. The available options are BOUND FEASIBLE

DIRECTION, BOUND FEASIBLE DIRECTION MIN REDUCTION, BOUND PROJECT SCALED DIRECTION,
BOUND PROJECTION ALONG FEASIBLE DIRECTION. The StepSize keyword denotes the step
size used to contract the feasible direction. The feasible direction can be scaled at every iter-
ation for both feasible direction and projection bound constraint modeling methods. DOTk
users should used a step size of 0.5 for BOUND FEASIBLE DIRECTION. Other bound constraint
modeling techniques usually do not require scaling of the feasible direction. However, DOTk
users can opt to scale the feasible direction since faster convergence rates can be obtained1.
The LowerBounds keyword specifies the n-dimensional array of lower bounds. The Upper-
Bounds keyword specifies the n-dimensional array of upper bounds. Figure 4.1 shows the
source code for the function getConstraintOptions. This function is defined and declared
in file getOptimizationOptions.m.

Table 4.2. Parameters for bound constraint modeling
methods

Parameter Argument Default

ConstraintMethod String OFF
StepSize Real 1.0
LowerBounds Real -1
UpperBounds Real -1

Interior Point Methods

The current version of DOTk does not support interior point methods [15] for general
constraint modeling. Current efforts exists to provide interior point constraint modeling
techniques in the next version of DOTk.

1DOTk users should understand that this behavior is problem dependent.
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Figure 4.1. Function getConstraintOptions source code.
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Chapter 5

Diagnostic Tools

DOTk softaware package provides a combination of tools to validate the correctness of
the formulation and monitor the progression of the optimization problem at each iteration.
This chapter describes the diagnostic tools available in DOTk and outlines how to enable
these tools in both C++ and MATLAB APIs. Current efforts are in progress to enable
Python [13] post-processing tools to DOTk users. Finally, examples are provided to illustrate
the proper use of these tools.

Text Files

DOTk provides users with a set of data files that allows them to monitor the progression of
the optimization problem at each iteration. The progress report is available through the data
file DOTk SolutionMethodName.out, where SolutionMethod specifies the solution method in
use. The five progress report options are DOTk NonLinearCG.out, DOTk QuasiNewton.out,
DOTk LineSearchNewtonCG.out, DOTk TrustRegionNewtonCG.out, and DOTk InexactSQP

.out. The optimal solution at a given iteration is available through the data file DOTk Varia-

bleType solution.out, where VariableType is either state or control, e.g. DOTk state so-

lution.out. Additional post-processing flexibility is possible when employing DOTk solu-
tion methods from the MATLAB API. The MATLAB API relieves users from the tedious
process of transfering text data into MATLAB. Examples of progress report output files are
shown in Figures 5.1-5.4.

Progress report keywords. The Iteration keyword specifies the number of optimization
iterations. The Func-count keyword specifies the cummulative number of function evaula-
tions at a given iteration. The F(x) keyword specifies the value of the objective function.
The norm(G) keyword specifies the norm of the gradient. The norm(P) keyword specifies
the norm of the trial step. The norm(C) keyword specifies the norm of the constraints. The
norm(N) keyword specifies the norm of the normal step. The norm(T) keyword specifies
the norm of the tangential step. The LineSrch-Step keyword specifies the line search step
size. The LineSrch-Itr keyword specifies the number of line search iterations taken to com-
pute the step size. The TR-Itr keyword specifies the number of trust-region iterations taken
to compute the trial step. The TR-Radius keyword specifies the trust-region radius at a
given iteration. The ActualReduc keyword specifies the decrease in the objective function
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Figure 5.1. Progress report for nonlinear CG and quasi-
Newton solution methods.

Figure 5.2. Progress report for trust-region Newton CG
solution methods.

at a given iteration. The PredReduc keyword specifies the decrease of the quadratic model
at a given iteration. The Ratio keyword specifies the ratio between the actual and the
predicted reduction. The Krylov-Itr keyword specifies the total number of inner loop itera-
tions, i.e. Krylov iterations, needed to compute the trial step. The Krylov-Error keyword
specifies the Krylov problem residual norm. The Krylov-Exit keyword specifies the Krylov
problem convergence criterion. The possible convergence criteria are the following:

1. NegCurvature: negative curvature was observed, i.e. indefinite/negative definite Hes-
sian;

2. Tolerance: residual tolerance was met;

3. TrustRegion: trust-region constraint violated;

4. MaxItr: maximum number of allowed Krylov iteration exceeded;
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Figure 5.3. Progress report for line search Newton CG
solution methods.

Figure 5.4. Progress report for trust-region inexact se-
quential quadratic programming solution method.

5. ZeroCurvature: zero curvature was observed, i.e. indefinite/negative definite Hessian;

6. NaNCurvature: NaN (not a number) curvature was observed, i.e. indefinite/negative
definite Hessian.

C++ API

Set functions used to enable the diagnostics progress reports. The set functions
used to enable the diagnostic progress reports are shown in Table 5.1. The setOutput-
DataDisplayOption function sets the diagnostic progress report output frequency. The
options are:

1. dotk::types::ITERATION both the progress report and optimal solution are outputed
at each iteration;

2. dotk::types::FINAL the progress report and optimal solution are respectively out-
puted at each iteration and at the end of the optimization problem;

3. dotk::types::OFF both the progress report and optimal solution outputs are inactive.

Users can use the set functions in Table 5.1 as follows:

instance.getIOPtr()->setFunction(argument),
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where instance specifies a DOTk solution method object, getIOPtr() returns a C++
shared pointer that grants access to all the public functions in class DOTk IOTools, and both
setFunc- tion and argument are any of the options shown in Table 5.1.

Table 5.1. C++ set function used to enable the diagnostics
progress reports.

Function Argument Default

setOutputDataDisplayOption dotk::types::display t dotk::types::OFF

MATLAB API

Users have access to additional output information when DOTk solution methods are
used through the MATALB API. Relevant output data is stored in a MATALB structure
array and provided to users. This set up easily enables access to MATLAB post-processing
tools. If only control variables are optimized, the objective function, control, gradient, and
trial step values at the final optimization iteration are outputed and repectively stored in vari-
ables ObjectiveFunction, Control, Gradient, and TrialStep. If both state and control
variables are optimized, the objective function, state, control, lagrange multipliers, gradient,
and trial step values at the final optimization iteration are outputed and respectively stored
in variables ObjectiveFunction, State, Control, LagrangeMultipliers, Gradient, and
TrialStep.

Parameter to enable the diagnostic progress reports in MATLAB. The parameters
to enable the diagnostic progress reports in MATLAB is shown in Table 5.2. The Display-
Option keyword specifies how frequent the diagnostic progress reports are outputed. The
options are ITERATION, FINAL, OFF. Above is the description of each option.

Table 5.2. Parameter to enable the diagnostics progress
reports in MATLAB.

Function Argument Default

OutputDataDisplayOption String OFF

Finite Differencing Check

One unique feature of DOTk software package is the finite differencing check tool. This
feature is extremely valuable when users can provide derivative information. This tool allows
users to corroborate/diagnose the proper derivation and implementation of the first-order and

70



second-order derivative information used to solve the optimization problem. Instead of veri-
fying the full gradient and Hessian operators, users can verify each of the pieces/components
required to compute both the gradient operator and the application of a vector to the Hes-
sian operators. Thus, the finite differencing check tool guarantees users that the derivative
information used to solve the optimization problem was properly derived and implemented.

Table 5.3. C++ functions used to enable the finite differ-
encing check tool.

Function Argument

checkFirstDerivativeUnconstrainedObjectiveFunction Vector
checkSecondDerivativeUnconstrainedObjectiveFunction Vector
checkFirstDerivativeConstrainedObjectiveFunction MultiVector

dotk::types::derivative t
checkSecondDerivativeConstrainedObjectiveFunction MultiVector

dotk::types::derivative t
checkFirstDerivativeEqualityConstraint MultiVector

dotk::types::derivative t
checkAdjointFirstDerivativeEqualityConstraint MultiVector

dotk::types::derivative t
checkAdjointSecondDerivativeEqualityConstraint MultiVector

dotk::types::derivative t

C++ API

Finite differencing check functions.1 The finite differencing check functions are shown
in Table 5.3. The checkFirstDerivativeUnconstrainedObjectiveFunction function
checks the first-order derivative of the objective function used for an unconstrained opti-
mization problem. This function implicitly checks the implementation of the objective func-
tion. The checkSecondDerivativeUnconstrainedObjectiveFunction function checks
the second-order derivative of the objective function used for an unconstrained optimization
problem. The checkFirstDerivativeConstrainedObjectiveFunction checks the first-
order derivative of the objective function used for a constrained optimization problem. This
function implicitly checks the implementation of the objective function. The checkSec-
ondDerivativeConstrainedObjectiveFunction checks the the second-order derivative
of the objective function used for a constrained optimization problem. The checkFirst-
DerivativeEqualityConstraint function checks the first-order derivative of the equality
constraint. This function implicitly checks the implementation of the equality constraint.
The checkAdjointFirstDerivativeEqualityConstraint function checks the adjoint of the

1A new C++ API is under development. The current API will be deprecated as soon as the new API is
available to DOTk users.
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first-order derivative of the equality constraint. The checkAdjointSecondDerivativeE-
qualityConstraint function checks the adjoint of the second-order derivative of the equality
constraint.

Figure 5.5. Finite differencing check example in C++.

The Vector and MultiVector keywords in Table 5.3 represent a std::vector< TYPE

> and std::vector< std::vector<TYPE> >, repsectivel. The TYPE keyword specifies a
floating-point type. The dotk::types::derivative t keyword specifies the first-order or second-
order derivative type. The derivative type options are:

1. dotk::types::Z specifies the first-order derivative of a function with respect to the
control variables

2. dotk::types::U specifies the first-order derivative of a function with respect to the
state variables

3. dotk::types::UU specifies the second-order derivative of the first-order derivative of a
function, where the first-order derivative was taken with respect to the state variables,
with respect to the state variables

4. dotk::types::ZZ specifies the second-order derivative of the first-order derivative of
a function, where the first-order derivative was taken with respect to the control vari-
ables, with respect to the control variables

5. dotk::types::UZ specifies the second-order derivative of the first-order derivative of a
function, where the first-order derivative was taken with respect to the state variables,
with respect to the control variables
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6. dotk::types::ZU specifies the second-order derivative of the first-order derivative of
a function, where the first-order derivative was taken with respect to the control vari-
ables, with respect to the state variables

Figure 5.6. Finite differencing check progress report.

Users are expected to follow a sequence of steps to implement enable the finite differencing
check tools through a C++ API. These steps are described as follows:

1. Define and declare the linear algebra API, see Figures 2.1 and 2.2

2. Define and declare the operators API, see Figures 2.6 and 2.7

3. Include the necessary header files in the main routine: DOTk State, DOTk Diagnostics,
UserDefinedLinearAlgebraAPI, UserdDefinedOperatorsAPI

4. Initialize C++ shared pointers to store both the linear algebra and operators APIs
dynamically allocated objects

5. Initialize a sol::params::space data structure to define the number of design vari-
ables, see Chapter 3

6. Initialize the DOTk Diagnostics object to enable access to all the finite differencing
check tools

7. Initialize std::vector of control or state variables2

8. Call finite differencing check function functionName to corroborate the derivation and
implementation of the operators

The UserDefinedLinearAlgebraAPI and UserDefinedOperatorsAPI keywords respectively
specify the linear algebra and operators child classes defined by the user, see Chapter 2. The
functionName keyword specifies any finite differencing check tool shown in Table 5.3. A
finite differencing check C++ example is shown in Figure 5.5.

Finite differencing progress report keywords. The finite differencing check progress
report is shown Figure 5.6. The Expected Value keyword specifies the evaluation of the

2The optimization problem class determines if both control and state variables vector are required.
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Table 5.4. MATLAB functions to enable the finite differ-
encing check tools.

Function Argument

mxCheckFirstDerivativeUnconstrainedObjectiveFunction Array
Structure Array

mxCheckSecondDerivativeUnconstrainedObjectiveFunction Array
Structure Array

mxCheckFirstDerivativeConstrainedObjectiveFunction Structure Array
Structure Array
Character Array

mxCheckSecondDerivativeConstrainedObjectiveFunction Structure Array
Structure Array
Character Array

mxCheckFirstDerivativeEqualityConstraint Structure Array
Structure Array
Character Array

mxCheckAdjointFirstDerivativeEqualityConstraint Structure Array
Structure Array
Character Array

mxCheckAdjointSecondDerivativeEqualityConstraint Structure Array
Structure Array
Character Array

user-defined function. The Finite Difference Appx. keyword specifies the evaluation
of the finite difference approximation to the function. The Relative Difference keyword
specifies the difference between the evaluation of the user-defined function and the finite
difference approximation. The Epsilon keyword specifies a positive finite perturbation.

MATLAB API

Functions to enable the finite differencing check tools. The functions to enable
the finite differencing check tools are shown in Table 5.4. The mxCheckFirstDerivative-
UnconstrainedObjectiveFunction function checks the first-order derivative of the objec-
tive function used in unconstrained optimization problems. The mxCheckSecondDeriva-
tiveUnconstrainedObjectiveFunction function checks the second-order derivative of the
objective function used in unconstrained optimization problems. The mxCheckFirst-
DerivativeConstrainedObjectiveFunction checks the first-order derivative of the ob-
jective function used in constrained optimization problems. The mxCheckSecondDeriva-
tiveConstrainedObjectiveFunction checks the second-order derivative of the objective
function used in constrained optimization problems. The mxCheckFirstDerivativeE-
qualityConstraint function checks the first-order derivative of the equality constraint. The
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Figure 5.7. Finite differencing check example in Matlab:
Uncosntrained optimization problems.

checkAdjointFirstDerivativeEqualityConstraint function checks the the adjoint of the
first-order derivative of the equality constraint. The mxCheckAdjointSecondDeriva-
tiveEqualityConstraint function checks the adjoint of the second-order derivative of the
equality constraint.

Unconstrained optimization problems. Users are expected to complete the following
steps to enable the finite differencing check tools in MATLAB3:

1. Set path to DOTk-MEX directory, e.g. PATH TO DOTk INSTALL DIRECTORY/matlab/exe

2. Define the linear algebra API in file getLinearAlgebra.m, see Figure 2.3

3. Define the objective function operators API in file getObjectiveFunctionOperators.m,
see Figure 2.8

4. Define a MATLAB array z that sets the vector of control variables, e.g.

z = ones(1,dim(z))*2

5. Call function getSolDiagnosticsInterface(operator type) to initialize the Op-
tions structure array, e.g.

[Options] = getSolDiagnosticsInterface('ObjectiveFunction')

6. Call DOTk-MEX finite differencing check function, e.g.

mxCheckFirstDerivativeUnconstrainedObjectiveFunction(z,Options)

The operator type keyword specifies the class of operator that will be corrobarated with the
finite differencing check tool. The options are ObjectiveFunction or EqualityConstraint.
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Figure 5.8. Finite differencing check example in MATLAB
for unconstrained optimization problems.

Finally, dim(·) specifies the argument dimension. A finite differencing check example in
MATLAB is shown in Figure 5.7.

Constrained optimization problems. The following steps are expected to be completed
by users to enable DOTk’s finite differencing check tools in MATLAB:

1. Set path to DOTk-MEX directory, e.g. PATH TO DOTk INSTALL DIRECTORY/matlab/exe

2. Define the linear algebra API in file getLinearAlgebra.m, see Figure 2.3

3. Define the objective function operators API in file getObjectiveFunctionOperators.m,
see Figure 2.8

4. Define the equality constrained operators API in file getEqualityConstrainedOpera-
tors.m, see Figure 2.10

5. Define a MATLAB structure array to set the vector of control variables, vector of state
variables, and the number of equality constraints4, for example:

Input.Control = ones(1,dim(control))*2

Input.States = ones(1,dim(state))*2

Input.NumEqConstraints = 3

6. Call function getSolDiagnosticsInterface(operator type) to initialize the options
structure array5, for example

3All the MATLAB files, i.e. m-Files, should be located inside the same working directory. If the m-Files
are scattered in different directories, users are expected to specify the path to these directories in addition
to the path of the DOTk-MEX directory.

4Users are expected to initialize the Input structure array fields as shown herein.
5Users should initialize both objective function and equality constraint options structure arrays for con-

strained optimization problems.
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[Options] = getSolDiagnosticsInterface('EqualityConstraint')

7. Call DOTk-MEX finite differencing check function functionName(Input, Options,

derivative type) to check the operator type implementation, for example

mxCheckFirstDerivativeEqualityConstraint(Input, Options, 'U')

The functionName keyword specifies any finite differencing check function shown in Table
5.4 for constrained optimization problems. The derivative type keyword specifies the
first-order or second-order derivative of a function. The derivative type keyword is a
character-type argument. The options are U, Z, UU, UZ, ZZ, and ZU. Users are encouraged to
review the derivative type descriptions discussed in the C++ API subsection. A finite
differencing check example in MATLAB is shown in Figure 5.8.
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Chapter 6

Tutorial

Simple Unconstrained Optimization Problem

Lets consider the following parameter estimation problem:

minimize
(z)∈R2

f(z), (6.1)

where
f(z) = 100(z2 − z2

1)2 + (1− z1)
2. (6.2)

This function is widely known in the literature as the Rosenbrock function [12]. Figure
6.1 shows a two and three dimensional plot of the Rosenbrock function Note that this is
an unconstrained optimization problem. The unique solution for this problem lies at z =
(z1, z2) = (1, 1), where f(z) = 0. The initial guess for this problem was set to z1 = z2 = 1.2.
The progress report for this problem is shown in Figure 6.2. Users can go over the subsequent
subsections to understand how to set up and solve the unconstrained optimization problem
in Equation 6.1 in both the C++ and MATLAB APIs.

Figure 6.1. Rosenbrock function. Left pane: 3D plot of
F (z). Right pane: 2D plot of F (z).
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Figure 6.2. Progress report: Unconstrained optimization
example problem.

C++ API

Users are expected to complete a sequence of steps to properly implement the C++ API
required to solve the unconstrained optimization problem defined in Equation 6.1. These
steps are described as follows:

1. Define and declare the linear algebra API. The C++ linear algebra class definition is
shown in Figure 6.3. Figures show the C++ function declaration for each of the linear
algebra functions required to perform all the internal DOTk linear algebra operations.
The linear algebra operations in this example problem are done in serial. However,
users can utilize DOTk default parallel linear algebra class if necessary. Furthermore,
recall that users can provide access to their preferred linear algebra library or implement
their own through the linear algebra API. Figures 6.4, 6.5, 6.6, and 6.7 show the
respective function declaration for the linear algebra operations scal, axpy, innr, and
normF. These linear algebra functions are needed by the DOTk to perform all the linear
algebra operations inside the source code.

2. Define and declare the operators API. The C++ class definition for this example
problem is shown in Figure 6.8. Figures 6.9, 6.10, and 6.11 display the C++ function
declaration for each of the operators required to solve the unconstrained optimization
problem defined in Equation 6.1 with the trust region Newton conjugate gradient
algorithm.

3. Declare main routine. This requires including the necessary header files as seen from
Figure 6.12.

(a) Set the number of design variables, i.e. number of controls

(b) Initialize C++ shared pointers to store the following dynamically allocated ob-
jects: linear algebra API, operators API, and the DOTk VectorSpaceReduced

instance that stores relevant problem data such as the solution to the problem.

(c) Initialize DOTk solution method instance, e.g. dotk::DOTk TrustRegionNewtonCG

80



Figure 6.3. Linear algebra class definition in C++.

(d) Set initial guess, e.g. setInitialControl(control)

(e) Set stopping criteria. Here, defualt values are used to solve the problem1

(f) Set method used to compute both first-order and second-order derivative infor-
mation, i.e. gradient and Hessian information

(g) Enable progress report2

(h) Call function getMin to solve optimization problem3

4. If necessary, perform the sequence of steps describe in Chapter 1 to generate DOTk
executables

1Default values can be used to solve the unconstrained optimization problem defined in Equation 6.1.
2Progress report is disabled by default.
3The optimal solution will be available to the user through the DOTk VectorSpaceReduced instance, e.g.

vector space->getConstControl(dotk::types::NEW)[i], where [i] denotes the i-th element.
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Figure 6.4. Vector scale function declaration in C++.

Figure 6.5. Update vector function declaration in C++.

This sequence of steps is explicitly shown in Figure 6.12. Analogously to the parameters
shown in Figure 6.12, users can define additional parameters pertinent to the solution method
in used. For instance, users can set the trust region radius contraction parameter as follows
trustRegionNewtonCG.getTrustRegionStepPtr()->setContractionParameter(0.5). These
parameters and their respective default values are discussed in Chapter 3.

MATLAB API

The MATLAB structure array with the field names and values that correspond to DOTk
options are defined in file getOptimizationOptions.m. Users are expected to set these
options inside getOptimizationOptions.m. Users are then required to complete a serie of
steps after setting the necessary options for the solution method of choice. These steps will
allow users to querry DOTK solution methods directly from MATLAB’s command window4.
These steps are described as follows:

1. Set path to DOTk-MEX install directory, e.g. PATH TO DOTk INSTALL DIRECTORY/

matlab/exe, in file driver.m. Figure 6.13 shows driver.m source code 5

4Users may need to compile DOTk MEX executables, see Chapter 1.
5The source code, i.e. m-files, for MATLAB routines driver, getOptimizationOptions,

runDiagnostics, and getMin will be provided to users. Thus, users are not expected to implement these
routines. However, users will have the freedom to modify these routines and adapt them to their problem of
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Figure 6.6. Vector inner product function declaration in
C++.

Figure 6.7. Frobenius norm function declaration in C++.

2. Define the linear algebra API in m-file getLinearAlgebra.m. Figure 6.14 shows the
default linear algebra API. The source code, i.e. m-file, for getLinearAlgebra.m will
be provided to users

3. Define objective function operators API in file getObjectiveFunctionOperators.m.
Figure 6.15 shows the objective function operators needed to solve the unconstrained
optimization problem defined in Equation 6.1

4. Solve unconstrained optimization problem

(a) Select solution method, e.g. algorithm t=‘TrustRegionNewtonCG’

(b) Select problem type/class, e.g. problem t=‘Unconstrained’

interest if necessary.
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Figure 6.8. C++ class definition.

(c) To enable the finite difference diagnostics tools set derivative check flag to true
(der flag=true). However, since the goal is to solve the unconstrained opti-
mization problem defined in Equation 6.1, the derivative check flag is set to false
(der flag=false)

(d) Define MATLAB structure array that stores field names and values used to set
the number of design variables as follows:6

Inputs.NumControls = 2

Inputs.NumStates = 0

Inputs.NumEqConstraints = 0

6Users are expected to define the Inputs structure array fields as shown in Step 4.

Figure 6.9. C++ function declaration for the objective
function declaration.
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Figure 6.10. C++ function declaration for the first-order
derivative of the objective function declaration.

Figure 6.11. C++ function declaration for the second-
order derivative of the objective function declaration.

Inputs.NumIeqConstraints = 0

(e) Call function getOptimizationOptions(algorithm t,problem t,Inputs) to ini-
tialize the Options and Operators structure arrays, e.g.

[Options,Operators] = ...

getOptimizationOptions(algorithm t,problem t,Inputs).

Figure 6.16 shows some parts of the source code in getObjectiveFunctionOpera-

tors.m7

(f) Call function getMin(algorithm t,Options,Operators) to solve optimization
problem, e.g.

[Output,TimeData] = getMin(algorithm t,Options,Operators)

(g) The Output MATLAB structure array stores relevant problem information. For
instance, the solution to the optimization problem is stored in Output.Control.
The Output MATLAB structure array stores the value of the objective function
(Output.ObjectiveFunction), optimal solution (Output.Control), norm of the
gradient (Output.Gradient), and norm of the trial step (Output.TrialStep) for
optimization problems solved with a reduced-space formulation strategy

The implementation of these steps is explicitly shown in Figure 6.13. The algorithm t key-
word specifies the solution method used to solve the optimization problem of interest. The op-
tions are NonLinearCG, QuasiNewton, TrustRegionQuasiNewtonCG, LineSearchNewtonCG,
TrustRegionNewtonCG, and InexactSQP. The problem t keyword specifies the type/class of
optimization problem solved based on the type of constraint. The options are Unconstrained,
EqualityConstrained, and Constrained.

7File getObjectiveFunctionOperators.m will be provided to users.
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Figure 6.12. Declaration of main routine in C++.

Simple Bound-Constrained Optimization Problem

Lets consider the following parameter estimation problem:

minimize
z∈R2

f(z),

s.t.

L1 ≤ z1 ≤ U1

L2 ≤ z2 ≤ U2

(6.3)

where F (z) is given by Equation 6.2, L1 and U1 respectively sepcify the lower and upper
bounds of z1, and L1 and U1 respectively sepcify the lower and upper bounds of z2. The
lower and upper bounds of z1 = z2 = [0, 5] in this example problem. The unique solution for
this problem lies at z = (z1, z2) = (1, 1), where f(z) = 0. The initial guess for this problem
was set to z1 = z2 = 1.2. The progress report for this problem is shown in Figure 6.17.

The C++ and MATLAB main driver implementations are shown in Figures 6.13 and
6.18. The sequence of steps required to set up the unconstrained optimization problem de-
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Figure 6.13. Default driver.m source code.

Figure 6.14. Default getLinearAlgebra.m source code.
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Figure 6.15. Objective function operators source code.

fined in Equation 6.2 also apply to the bound-constrained optimization problems defined
in Eqaution 6.3. The only subtle difference lies in the need to define the lower and up-
per bound vectors.8. For instance, if the C++ main driver is employed, users are required
to initialize two standard vectors to set the lower and upper bounds. Users are then re-
quired to initialize DOTk lower and upper bounds data structures by calling DOTk function
setControlBounds(lower bound, upper bound), e.g. vector space->setControlBounds

(lower bound, upper bound), see Figure 6.18.

MATLAB users are expected to first set the Options.BoundConstraints field to 1 in
file getOptimizationOptions.m to activate the bound-constraint option. Second, users are
expected to define the lower and upper bound vectors in function getConstraintOptions.
Third, users are expected to select the bound constraint modeling method by setting keyword
ConstraintMethod. The bound constraint modeling options include BOUND FEASIBLE DI-

RECTION, BOUND FEASIBLE DIRECTION MIN REDUCTION, BOUND PROJECT SCALED DIRECTION,
BOUND PROJECTION ALONG FEASIBLE DIRECTION. Constraint are inactive by default; hence,
the ConstraintMethod keyword is set to OFF. Figure 6.19 shows the source code for function
getConstraintOptions, which is defined and declared in file getOptimizationOptions.m.

8Users have the freedom to specify lower and upper bounds for each design variable
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Figure 6.16. DOTk options m-file.
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Figure 6.17. Progress report: Bound-constrained opti-
mization example problem.

Simple Constrained Optimization Problem

Lets consider the following parameter estimation problem:

minimize
(u)∈R5

f(u),

s.t.

u2
1 + u2

2 + u2
3 + u2

4 + u2
5 = 10

u2u3 − 5 u4u5 = 0

u3
1 + u3

2 = −1,

(6.4)

where

f(u) = f(u1, u2, u3, u4, u5) = exp(u1u2u3u4u5)− 0.5(1 + u3
1 + u3

2)
2. (6.5)

The unique solution for this problem lies at u = (−1.71, 1.59, 1.82. − 0.763,−0.763), where
f(u) = 5.395e−2. The initial guess for this problem was set to u = (−1.8, 1.7, 1.9,−0.8,−0.8).
The progress report for this problem is shown in Figure 6.20.

C++ API

9Users are expected to complete a sequence of steps to implement the C++ main routine
that enables DOTk solution methods for constrained optimization problems. These steps
are described as follows:

9The full-space interface is currently being updated. Thus, the C++ source code display in the following
Section will become legacy source code soon. DOTk users will be provided with the new full-space interface
as soon as the new interface becomes available.
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Figure 6.18. C++ main driver: Bound-consrained opti-
mization example problem.

1. Define and declare the linear algebra API. The linear algebra class is define in the same
manner as the linear algebra class define for the unconstrained optimization problem.
see Figures 6.3. Thus, the linear algebra operations can be declared as shown in
Figures 6.4, 6.5, 6.6, and 6.7. Recall that users can used the linear algebra library of
their choice. Thus, users are not required to used DOTk default serial and parallel
linear algebra interface. and 2.2

2. Define and declare the operators API. Figure 6.21 shows the operators class declara-
tion for the constrained optimization problem defined in Equation 6.4. Similar to the
unconstrained optimization example problem, each of the functions defined in class
FullSpaceTestOperators10 needs to be declared by DOTk users. For simplicity, only
the function declaration for the objective function is shown in Figure 6.2211 for this

10This class name is specific to the constrained optimization example problem shown herein, see Figure
6.21

11Several functions declaration required several lines of source code. Thus, the quality of the figures was
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Figure 6.19. Bound constraint modeling options.

Figure 6.20. Progress report: Constrained optimization
example problem.

example problem

3. Declare main routine. This requires including the necessary header files as seen from
Figure 6.23.

(a) Initialize a sol::params::space data structure to define the number of design
variables, see Chapter 3

(b) Initialize DOTk vector space, e.g. sol::state::reduced space, and set initial
guess

(c) Initialize a sol::solver::krylov params data structure to define the dimensions
of the augmented problem

(d) Initialize C++ shared pointers to store the following dynamically allocated ob-
jects: linear algebra API, operators API, preconditioner operators API, DOTk -

ConstrainedInterface, DOTk FullSpacePrecInterface, DOTk GMRES12, and DOTk

GMRES Interface.

not optimal for display purposes.
12The GMRES and Conjugate Direction solvers are available in DOTk. The GMRES solver is recommended.
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Figure 6.21. Bound constraint modeling options.

(e) Initialize DOTk solution method, e.g. sol::DOTk InexactSQP

(f) Set stopping criteria or solve problem with default values

(g) Set second order information (Hessian) type13

(h) Enable diagnostics tools, diagnostics are disabled by default

(i) Set initial guess

(j) Call function getMin to solve the constrained optimization problem

The implementation of these steps is explicitly shown in Figure 6.23. Analogously to the
parameters shown in Figure 6.23, users can define additional parameters pertinent to the
solution method in used. The parameters and their respective default values are discussed
in Chapter 3.

The sol::solver::krylov params(·) data structure stores information relevant to the
iterative solver. For instance, sol::solver::krylov params struct(dim(x), dim(g),

itr, restart itr), where x specifies the vector of primal variables, g specifies the vector of
equality constraints, itr specifies the maximum number of iterations allow, and restart itr

specifies the solver’s restart frequency, and and dim(·) specifies the argument dimension.

The DOTk FullSpacePrecInterface, DOTk ConstrainedInterface, and DOTk GMRES In-

terface were respectively created to:

13The first-order information is assumed to be provided by the user,i.e. USER DEFINED GRAD.
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Figure 6.22. Objective function declaration in C++.

1. allow users to provide user-defined preconditioners;

2. free users from having to implement the operations required to assemble the gradient
operator and the application of a vector to the Hessian operator;

3. and to allow users to provide an user-defined solver to solve the augmented system
problem.

MATLAB API

Similar to the previous example problem, the MATLAB structure array with the field
names and values that correspond to the DOTk solution method in used is defined in File
getOptimizationOptions.m. Users are expected to complete a sequence of steps to enable
DOTk solution methods through the MATLAB API. These steps are described as follows:

1. Set path to DOTk-MEX directory, e.g. PATH TO DOTk INSTALL DIRECTORY/matlab/exe

in file driver.m. Figure 6.13 shows driver.m source code

2. Define the linear algebra API in m-file getLinearAlgebra.m. Figure 6.14 shows
getLinearAlgebra.m source code.

3. Define the objective function operators API in file getObjectiveFunctionOperators.m.
Figure 6.24 shows the objective function operators needed to solve the constrained op-
timization problem defined in Equation 6.414

4. Define the equality constrained operators API in file getEqualityConstrainedOpera-
tors.m. Figure 6.25 shows a simple example on how to define and declare the equality
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Figure 6.23. C++ main driver: Constrained optimization
example problem.

constrained operators for this example problem15

5. Solve constrained optimization problem

(a) Select solution method, e.g. algorithm t=‘InexactSQP’

(b) Select problem type/class, e.g. problem t=‘Constrained’

(c) Disable finite difference diagnostics tools

(d) Define MATLAB structure array that stores the field names and values that are
used to set the number of design variables as follows:

14Only the objective function declaration is shown in Figure 6.24 for simplicity. Other objective function
operators are declared in similar manner.

15Only the equality constraint function declaration is shown in Figure 6.25 for simplicity. The other
equality constraint operators, e.g. the required derivative operators, are declared in similar manner.
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Figure 6.24. Objective function operator in MATLAB.

Inputs.NumControls = 0

Inputs.NumStates = 5

Inputs.NumEqConstraints = 3

Inputs.NumIeqConstraints = 0

(e) Call function getOptimizationOptions(algorithm t,problem t,Inputs) to ini-
tialize both the Options and Operators structure arrays as follows:

[Options,Operators] = ...

getOptimizationOptions(algorithm t,problem t,Inputs)

There are additional input options that advanced users can adjust for the inexact
trust region SQP algorithm. Users can set these options in function getInexact-

SQPOptions, which is defined and declared in file getOptimizationOptions.m.
Figure 6.26 shows function getInexactSQPOptions source code

(f) Call function getMin(algorithm t,Options,Operators) to solve optimization
problem, e.g.

[Output,TimeData] = getMin(algorithm t,Options,Operators).

See Figure 6.1316

(g) The Output MATLAB structure array stores relevant problem information. For
instance, the optimal state is stored in Output.State. The Output MATLAB
structure array stores the value of the objective function (Output.Objective-
Function), optimal state (Output.State), optimal control (Output.Control),

16The same driver used to solve the unconstrained optimization problem can be employed to solve the
constrained optimization problem.
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Figure 6.25. Equality constraint operator in MATLAB.

optimal lagrange multipliers (Output.LagrangeMultipliers), norm of the gra-
dient (Output.Gradient), and norm of the trial step (Output.TrialStep) for
optimization problems solved with a full-space formulation strategy, e.g.

[Output, TimeData] = mxInexactSQP(Options,Operators)
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Figure 6.26. Source code for getInexactSQPOptions func-
tion.
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